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Fig. 5. Equuvalent circuit for oscillator.

IV. ANALYSIS OF RESULTS

Referring to Test 5 with image guide as in Fig. 2(a), detailed
measurements were made of power and frequency of the oscilla-
tor as a function of coaxial cavity height d. Here, 4 is the
distance from the bottom of the cavity to the bottom of the iris.
To convert this length to /, the distance from the bottom of the
cavity to the top tuning disk, add 0.55 in as in Fig. 2(a). The test
results are shown in Fig. 4. These data are taken with no external
tuning except changing the coaxial cavity height. Note as the
coaxial cavity is varied from the maximum height to the mini-
mum height, the frequency variation is nearly linear until a
maximum frequency is reached. Then the cycle starts again and
the frequency is repeated every half wavelength.

A similar test was tried on the same mechanical structure
except that, here, external tuning using pieces of metal placed
near the dielectric were used in addition to varying the cavity
height (Test S). Hence, the power output is considerably higher,
but the frequency shows the same periodicity.

In Test 2, a microstrip line was used with an alumina top
housing. Additional tuning with external elements was used. Note
the wide tuning range (11 GHz) and the power levels up to 11
mW obtained and, again, a similar periodicity. In Test 3, micro-
strip line was used with a metal cylinder top housing. Note that
the tuning range was diminished to less than 1 GHz and the
power level remained nearly the same, i.c,, 7 mW.

V. CIRCUIT ANALYSIS

The equivalent circuit for these oscillators is shown in Fig. 5.
Here, — R represent the negative resistance of the Gunn diode,
¢, is the junction capacitance of the diode, and I, and C, are
the package inductance and capacitance parasitics. The coaxial
cavity is represented by a two-port network, consisting of a
transmission line for the coaxial cavity and R; is the output load
resistance. The load resistance is assumed to be high, since the
output impedance is matched to air or to a metal waveguide for
measurement. The R, is assumed to be transformed to the
terminals across C,. Another reason for R, being high is that for
oscillation to occur, the Re(Z,) must be less than — R, which is
about 5 £. The details of this analysis, where the criterion for
oscillation requires high R, were shown in previous reports

(11-{3]-

V1. CONCLUSIONS

An oscillator has been developed useful for launching electro-
magnetic energy into image guide or microstrip transmission line.
This is done by recessing the Gunn diode deeply in the ground
plane in order to establish a coaxial resonating device. The open
guided structure was then placed over the coaxial opening in
order to guide the energy out of the oscillator structure. Oscilla-
tors were designed with up to 43 mW at 57 GHz, with diodes
which provided, in metal waveguide oscillators, up to 70-mW
power output. In addition, mechanical tuning provided a linear
range of over 11 GHz with a continuously variable height cavity.
Results are very reproducible from one oscillator to another
without external compensation.
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A Simple Numerical Method for Studying the
Propagation Characteristics of Single-Mode
Graded-Index Planar Optical Waveguides

A. N. KAUL, S. I. HOSAIN, anp K. THYAGARAJAN

Abstract — A simple numerical method based on the Runge~Kutta method
is presented to compute the propagation constant, the modal field, and the
cutoff wavelength corresponding to the fundamental TE, and TM, modes
of a planar optical waveguide with an arbitrary refractive index profile. The
method is much simpler and requires less computational effort than the
earlier reported numerical methods. We have also used the technique for
an estimation of the effect of the Ve term in TM modes.

1. INTRODUCTION

In recent years, a considerable amount of work has been
reported on the study of the propagation characteristics of inho-
mogeneous planar optical waveguides used in integrated optics
[1}-[12]. Most of the waveguides used in integrated optics are
single moded [16], which support the fundamental TE, and TM,,
modes. In order to optimize the performance of integrated optical
devices using such waveguides, it is important to know the
propagation characteristics of such waveguides.

The propagation constant and the transverse modal field distri-
bution of a mode can, in general, be obtained from the solution
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of the Maxwell’s equations. However, except for a few refractive
index profiles (viz., exponential, secant—hyperbolic, parabolic,
etc.), analytical solutions do not exist for such waveguides. Hence,
one uses either approximate methods such as the perturbation
method [2], the WKB method [3]-[5], and the variational method
[6], or uses numerical methods [7]-[14] to obtain the solution of
this equation. In many cases, the perturbation method cannot be
applied successfully, as there is no closely related problem for
which an exact solution exists. The WKB method does not give
accurate results for lower order modes [13] or for steep gradient
refractive index profiles. For the variational method, the choice
of the trial field is very critical and it should resemble the exact
field very closely. In addition, since the variational and WKB
methods become inaccurate close to cutoff, the cutoff value
determination requires more accurate techniques. The numerical
methods reported so far, although quite useful, seem to be
complicated, require extensive computations, and do not give any
satisfactory criterion for achieving the required accuracy. For
instance, in the method proposed by Pichot [8], the Fredholm
equation approach is used to evaluate n.(=pf/k,), which is
quite cumbersome and there is no discussion about the comput-
ing time with respect to accuracy. In the method proposed by
Ramaswamy et al. [11], calculations have been done for multi-
mode waveguides only; however, in actual practice, waveguides
used in integrated optical circuits are single moded. In addition,
the WKB technique has been used to determine n,, which
becomes inaccurate for low V' values [3], [4] and for profiles far
from parabolic [9]. As mentioned by them, their method fails for
large depths due to the blowing up of the fields. Also, the cutoff
calculations have been done using the WKB approach, which
again is not very accurate. In the method proposed by Meunier
et al. [12], calculations have been done only for multimode
waveguides and there is no mention about the computing time
with respect to accuracy, etc.

In this paper, we present a simple numerical method for the
solution of the wave equation corresponding to the TE; and TM,,
modes of an inhomogeneous planar optical waveguide with arbi-
trary refractive index profile. The method is extended to compute
the cutoff wavelength of the TE; mode which determines the
limit of single-mode operation. Such numerical methods are very
useful to test the validity of the commonly used approximate
methods [2]-[6]. In Section II, we will briefly discuss the neces-
sary theory of our method, and in Section III, we will present
some numerical results to show the validity of our method.

II. THEORY

We consider an inhomogeneous planar optical waveguide for
which the refractive index distribution can be written as

n*(x)=n?+2nAf(x), x>0

=n?, x<0 €))]
where n, is the refractive index of the substrate, n, is the
refractive index of the cover (which is usually air), n, + A is the
maximum refractive index (for A < n,), and f(x) defines the
shape of the profile; f(o) =1 for all profiles and, except for
parabolic and linear profiles, f(c0) = 0. For an exponential pro-
file f(x)=-exp(—x/d), and for a Gaussian profile f(x)=
exp(— x%/d?), where d is the diffusion depth. For the linear
profile f(x)=1- x/d and for the parabolic profile f(x)=1-
x%/d?, so that, for such profiles, f(d) =0 [11].

The transverse field component ¢ of the mode satisfies the
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following eigenvalue equation [17]:
d’*¢

w—+k§d2[n2(é)—n§]¢=0

i for TE mode

(22)
d N izazye 3( 1 dn? 2+ 1 d*n?
a2 | mO-g\ | T e
for TM mode (2b)

where ¢ = E, for TE modes and ¢ = H, /n(§) for TM modes,
n, (=B/ky) is the effective index of the mode, § the propa-
gation constant, { = x/d, k, is the free-space wavenumber, Iy
is the transverse electric field of the TE mode, H, is the
transverse magnetic field of the TM mode, and the direction of
propagation is along the Z-axis.

—Bzdz}qb———o

A. Computation of n,,

A numerical method for the solution of the scalar wave equa-
tion corresponding to the fundamental mode of radially inho-
mogeneous optical fibers has been discussed in detail by Sharma
et al. [18]. Following a similar approach and substituting n* (§)
from (1) in (2a) and (2b) for the TE and TM modes, respectively,
we transform the second-order differential equations into the
following first-order differential equations:

-Zg=-—Gz—k%d2[nf+2nSAf($)—n§]§,

£> 0 for TE mode (3)
iq__ 2 _ 220 206N 0 3 1 dn’(§) i
gt =76 ked [" O~ Tas\ e  a

R O
Y zani(e)  ae

e}, £>0for TM mode (4)
where G=1/¢-d¢/dé. In order to obtain the boundary condi-
tions on G, we observe that, for TE modes, both ¢ and d¢/dé
are continuous everywhere. Thus, G is continuous everywhere.
Since in the cover region (£ < 0)

¢~ exp| kodyfn? — n’¢] (52)
we obtain
1d¢ R
G(¢=+0)=G(¢=-0)=—— = kodyn; - n; .
¢ dE |,
(5b)
H for TM modes, H, and —rre 20 t
) s —— are continuous
owever, for modes, H, an 2(E) dE
everywhere, since ¢ = H, /n(£), we have
H (§=+0) H(t=-0)"
¢(£=+0)= 2} 12 2} 12
(ns +2nsA) (nS +2n,4)
nc¢(£=_0)
- (5¢)
(n2+2n,4)
Similarly
1 d¢ 1 4H, 1 dn?(§)
¢ df|¢-+0 H, dE i b0 2n%( %) d; fmt0
1 do nA df
= 2 A _—— - Y .
(ns +2ns )¢ T P (n§+2nsA) dé e o
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Thus

kod
G(£=+0) =—5(n} +2n,8)(n} - n2)'*

nA df sd
_(n§+2nsA)(Eg)£_+0' ( )

Far into the substrate (i.e., £ = 00), since the refractive index
saturates to n,, the field is expected to tend as

exp[— kodyn? — n? £] and thus
G(§~e0) =~ KodfrT ©)

The above boundary condition for G(£—o0) is valid for
profiles which saturate continuously to n,. On the other hand, for
the linear and parabolic profiles, since n=n, for x>d, the
boundary condition becomes G (§ =1) = — kodyn2 — n?.

Hence, for a given planar waveguide (i.e., for given values of
ko, d, n,, n., A, and f (§)), the problem of computing »n, for a
particular mode reduces to solving the first-order differential
equation (3) or (4) as the case may be, using any standard
procedure starting with the initial condition (5b) or (5d) and
satisfying (6) as £ — oco. Theoretically, G(£ — c0) corresponds to
the value of G at a very large value of §; but in order to reduce
the number of steps in the computation, we assume the point
£ — 0 to be some finite value of § much greater than unity (i.e.,
x > d) where G is very small. This value would depend on the
accuracy required in the computation of =,.

B. Computation of TE, and TM, Mode Cutoffs
The cutoff frequencies of the TE, and TM, modes are param-

eters of considerable interest. At cutoff, n, = n_; hence, (3) and
(4) reduce to
dG

— == G -2k3.dPnAf(8),

ai £> 0 for TE,; mode

(72)

=—G?*—k2,d*|2n.A ’ L ke)”
=-G*— kg, n, f(E)“W 00 &

1 d*n?
+
2k2.d*n*(§) dg?

J, £> 0 for TM, mode (7b)

with the boundary conditions again given by (5) and (6) and »,
replaced by », and k, replaced by k,,=2#%/X,, where A, is the
cutoff wavelength. In addition, G(£ = o0) = 0 for both TE,, and
TM, modes. Having obtained the cutoff wavelength, one can
immediately obtain the cutoff ¥V number of the waveguide

V.= ko,d(2n,0)"2.

The problem of computing X for TE, and TM, modes then
reduces one to solving (7a) or (7b) with the above-mentioned
conditions on G({=+0) and G(£— o). As before, the point
§=o00 is chosen as some finite value of ¢ much greater than
unity.

C. Computation of TE, and TM,, Modal Fields

Since ¢ satisfies a linear differential equation, the solution is
unique apart from a constant multiplier. Hence, without loss of
generality, we may assume the field to be unity at the cover-guide
interface, i.e.,¢(0) =1. The value of ¢ at an arbitrary value of ¢
can be written as

o(8) =exp| ['6(8) ar’]. 0
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Fig. 1. Plot of normalized propagation constant b as a function of V for TE,

and TM,, modes for the three index profiles.

Once n, is determined, the quantity f 5G(£’)d£’ is computed
0

numerically, where the integrand G(§’) is obtained from the
numerical solution of (3) or (4) corresponding to the TE, or TM,
mode. Thus, the modal field ¢(£) can be plotted as a function
of £.

D. Computation of TE; Mode Cutoff

The cutoff frequency of the TE, mode determines the upper
limit of single-mode operation and, hence, is a parameter of
considerable interest. The modal field ¢ for the TE, mode cutoff
satisfies the same equation (72) with the same boundary condi-
tions. Thus, the cutoff V¥ value of the TE, mode is obtained in a
similar manner. However, it may be noted that, for the TE,
mode, at some value of £ <oo, ¢ becomes zero, which implies
G — 0. Hence, in this region, one has to switch over to the
substitution F=1/G =¢(dé/d¢)"! which transforms (7a) to
the following form:

dF

pT: =1+2F?R}, d*n Af(£). (9
Once the F=0 (G — o0) region is crossed, (7a) is used again to
compute G(0).

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical results to test the
validity of our method. We have computed the effective indices,
the modal field, and cutoff 7 values for the TE, and TM,
modes corresponding to an exponential, a Gaussian, and a buried
Gaussian profile for which f(x) is e *9, ¢ */4 and
e’/ respectively. We assume typical values of the various
parameters: n,=2177, A=0.043, d=0.931pm, a = 0.2009%m,
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TABLE I
CUTOFF V' VALUES OBTAINED BY PRESENT METHOD

Mode £(x)=e*/d £ Gmex /8 £ (xymem Ot /82
TEO 1.0868 1,4333 1,0973
mo 1.1735 1.5843 1,2224
i of 2,6593 4,0376 3.,2218

n,=1.0, and V= 2.0, which, as we will show, corresponds to the
single-mode region. The value of n, for the TE; mode corre-
sponding to the exponential profile obtained by our method is
2.1815083, while the exact and the WKB values are 2.1815083
and 2.1805704, respectively. Thus, we see that our results match
exactly with the exact, while WKB gives an error of about
9Xx10~“. Similarly, the value of n, for the TE, mode corre-
sponding to the Gaussian profile obtained by our method is
2.1805099, while the WKB value is 2.1774472. Thus, the WKB
method gives an error of 3 X107 3.
In Fig. 1, the normalized propagation constant
n —n}
b( 2n,A )

obtained by the present method has been plotted as a function of
V for TE, and TM, modes corresponding to the above three
profiles.

In Table I, we have presented the cutoff V' values of the TE,,
TM,, and TE; modes corresponding to the above three profiles.
As expected, we observe from Table I that, for each of these
profiles, the cutoff V' value of the TM, mode is greater than that
of the TE, mode.

We may mention here that the values of N and the maximum
value of £ depend on the accuracy required. We have verified
that for the profiles studied here convergence is obtained with
N = 40 for TE and N = 60 points for TM modes per unit interval
in £. An accuracy of 1073 in n, requires typically a2 maximum
value of £ of about 4 and taking a CPU time of about 35 seconds
on ICL 2960 computer. On the other hand, an accuracy of 1077
in n, can be obtained with the same N value but the required
CPU time goes up to 55 s. In addition, since the program is
self-iterative (i.e., it iterates on the maximum §{ starting from
some initial value), there are no blowing up of the field problems
as reported in [11].

As can be seen from (2b) for graded refractive index profiles,
one has additional terms containing dn?/d$ and d*n?/d¢? which
are absent in homogeneous waveguides. Using our technique, we
can indeed estimate the effect of these terms and we have found
that for the profiles considered the effect of these terms is only
about .0014 percent near cutoff and .001 percent far from cutoff.
Hence, for such profiles, one may neglect the effect of the ve
term.

In Fig. 2(a) and (b), we have plotted the normalized transverse
modal fields £, and H, as a function of § for the TE, and TM,
modes, respectively, corresponding to the exponential and buried
Gaussian profiles for V= 2.0. Such plots are extremely useful in
computing the field depth which is defined as the value of
where the field value reduces to 1 /e of its peak value. The modal
field distributions are also useful in overlap integral calculations
for estimating the efficiencies in electrooptic or acoustooptic
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Fig. 2. Plot of normalized field amphtude as a function of £( = x/d) for TE,
and TM,, modes for (a) exponential profile and (b) buried Gaussian profile
with n,=2.177, n,=1.0, A =0.043, d =0.931pm, g =0.290%m, and V' =
2.0.

interactions using such waveguides, coupling efficiency calcula-
tions, etc.

IV. SUMMARY

In this paper, we have presented a simple numerical method to
compute the propagation characteristics of single-mode inho-
mogeneous planar optical waveguides with arbitrary refractive
index profiles, The method not only converges rapidly but is also
capable of giving results of specified accuracy. The results ob-
tained by the present method are useful in checking the accu-
racies of the results obtained by various approximate methods.
The method can be used in effective index calculations where
usually the effective index profile is quite arbitrary and is known
only at a finite number of points. Hence, the method can be used
with a little modification for such calculations. The method can
also be used for any experimentally determined profile.
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Exact fields are obtained by the present method which can be
used to form trial fields for variational calculations. Besides, the
same method can be used for fundamental as well as other higher
order modes to obtain n, and field profiles.
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Abstract —The cutoff wavenumbers of TE and TM modes (higher order
modes) in a tubular line having an offset center conductor have been
calculated. Whereas most previous methods used to study this structure
were of an approximate nature, the analytical method developed by Singh
and Kothari leads to a rigorous analytical formulation. The boundary
conditions ‘'on both conductor boundaries, assumed to be perfectly conduct-
ing, are satisfied exactly. The cutoff values calculated show that some
results previously reported are inaccurate.

I. INTRODUCTION

Introducing a lateral offset in the center conductor of a coaxial
line provides a simple way to decrease its characteristic imped-
ance without modifying the dimensions of the conductors [1], [2].
This technique can be used to realize quarter-wave transformers
and other matching devices. The properties of the dominant TEM
mode can readily be determined with conformal mapping. Fur-
thermore, it is also necessary to determine the cutoff frequency of
higher order modes which set an upper limit to the useful
frequency of operation.

The propagation along this geometry was considered by several
authors [2]-[6] using approximate techniques for its analysis (in
particular, point-matching and conformal mapping). While most
articles did not indicate which accuracy was obtained, one recent
article [6] provides an upper and a lower bound. In some in-
stances, however, the range between the bounds is rather large
(up to 20 percent), making the use of the results of little practical
interest. For some other situations, the bounds for successive
solutions actually overlap one another.

The same problem was tackled analytically by other authors
[71-[9). A special perturbation method was developed in [8]. It
could be useful when extended to dielectric waveguides or ec-
centric Goubau lines [10], but the study considers only small
eccentricities. Some of the tabulated parameters of [8] actually
yield nonphysical results; also, symmetric and antisymmetric
modes appear to be degenerate, which contradicts experimental
observations. Finally, an analytical method devised to analyze the
related problem of a circular plate with an eccentric circular hole
[9] yields incorrect final expressions. Detailed comments on this
paper have appeared recently [17].

The analysis of previous publications shows that, even though
considerable effort has been devoted to the study of this geome-
try, the available techniques are still either approximate when not
altogether incorrect.

A rigorous mathematical derivation is presented in the present
paper. The Helmholtz equation for higher order modes is solved
exactly, and the boundary conditions on the two offset conduc-
tors are satisfied by the technique developed by Singh and
Kothari [11], based on Graf’s addition theorem for Bessel func-
tions [12]. One obtains in this manner an infinite set of linear
equations which must be truncated to permit numerical calcu-
lations. The accuracy of the results can be arbitrarily improved
upon by taking additional terms.

II. Basic THEORY

The longitudinal direction of the offset tubular line, to which
the axes of the two conductors are parallel, is the z direction. The
system is symmetrical with respect to the x axis; its transverse
cross section is shown in Fig, 1, in which all significant dimen-
sions are also reported. Two polar coordinate systems, labeled
(r,0) and (#,0"), are defined with respect to the centers of the
two conductors located at 0 and 0, respectively.

The general solution for the transverse dependence of the
potential is obtained by solving the two-dimensional Helmholtz
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