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IV. ANALYSIS OF RESULTS

Referring to Test 5 with image guide as in Fig. 2(a), detailed

measurements were made of power and frequency of the oscilla-

tor as a function of coaxial cavity height d. Here, d is the

distance from the bottom of the cavity to the bottom of the iris.

To convert this length to 1, the distance from the bottom of the

cavity to the top tuning disk, add 0.55 in as in Fig. 2(a). The test

results are shown in Fig. 4. These data are taken with no external

tuning except changing the coaxial cavity height. Note as the

coaxial cavity is varied from the maximum height to the mini-

mum height, the frequency variation is nearly linear until a

maximum frequency is reached. Then the cycle starts again and

the frequency is repeated every half wavelength.

A similar test was tried on the same mechanical structure

except that, here, external tuning using pieces of metal placed

near the dielectric were used in addition to varying the cavity

height (Test 5). Hence, the power output is considerably higher,

but the frequency shows the same periodicity.

In Test 2, a microstrip line was used with an alumina top

housing. Additionaf tuning with external elements was used. Note

the wide tuning range (11 GHz) and the power levels up to 11

mW obtained and, again, a similar periodicity. In Test 3, micro-

strip line was used with a metal cylinder top housing. Note that

the tuning range was diminished to less than 1 GHz and the

power level remained nearly the same, i.e., 7 mW.

k’. CIRCUIT ANALYSIS

The equivalent circuit for these oscillators is shown in Fig. 5.

Here, – R represent the negative resistance of the Gunn diode,

C, is the junction capacitance of the diode, and LP and CP are

the package inductance and capacitance parasitic. The coaxial

cavity is represented by a two-port network, consisting of a

transmission line for the coaxiaf cavity and R= is the output load

resistance. The load resistance is assumed to be high, since the

output impedance is matched to air or to a metal waveguide for

measurement. The R ~, is assumed to be transformed to the

terminals across CP. Another reason for R ~ being high is that for

oscillation to occur, the Re ( Z~) must be less than – R, which is

about 5 Q. The details of this analysis, where the criterion for

oscillation requires high R ~, were shown in previous reports

[11-[3].

VI. CONCLUSIONS

An oscillator has been developed useful for launching electro-

magnetic energy into image guide or microstrip transmission line.

This is done by recessing the Gunn diode deeply in the ground

plane in order to establish a coaxial resonating device. The open

guided structure was then placed over the coaxial opening in

order to guide the energy out of the oscillator structure. Oscilla-

tors were designed with up to 43 mW at 57 GHz, with diodes

which provided, in metaf waveguide oscillators, up to 70-mW

power output. In addition, mechanical tuning provided a linear

range of over 11 GHz with a continuously variable height cavity.

Results are very reproducible from one oscillator to another

without external compensation.
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A Simple Numerical Method for Studying the

Propagation Characteristics of Single-Mode

Graded-Index Planar Optical Waveguides

A. N. KAUL, S. I. HOSAIN, AND K. THYAGARAJAN

Abstract —A simple numerical method based on the Rnnge-Kutta method

is presented to compute the propagation constant, the modaf field, and the

cutoff wavelength corresponding to the fundamental TKO and TMO modes

of a planar optical wavegnide with an arbitrary refractive index profile. The

method is much simpler and requires less computational effort than the

earfier reported numerical methods. We have also used the technique for

an estimation of the effect of the v c term in TM modes.

1. INTRODUCTION

In recent years, a considerable amount of work has been

reported on the study of the propagation characteristics of inho-

mogeneous planar opticaf waveguides used in integrated optics

[1]-[12]. Most of the waveguides used in integrated optics are

single moded [16], which support the fundamental TEO and TMO

modes. In order to optimize the performance of integrated opticaf

devices using such wavegttides, it is important to know the

propagation characteristics of such waveguides.

The propagation constant and the transverse modal field distri-

bution of a mode can, in general, be obtained from the solution
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of the Maxwell’s equations. However, except for a few refractive
index profiles (viz,, exponential, secan–hyperbolic, parabolic,

etc.), analytical solutions do not exist for such waveguides. Hence,
one uses either approximate methods such as the perturbation
method [2], the WKB method [3]–[5], and the variational method

[6], or uses numerical methods [7]-[14] to obtain the solution of

this equation. In many cases, the perturbation method cannot be

applied successfully, as there is no closely related problem for

which an exact solution exists. The WKB method does not give

accurate results for lower order modes [13] or for steep gradient

refractive index profiles. For the variational method, the choice

of the trial field is very critical and it should resemble the exact

field very closely. In addition, since the variational and WKB

methods become inaccurate close to cutoff, the cutoff value

determination requires more accurate techniques. The numerical

methods reported so far, although quite useful, seem to be

complicated, require extensive computations, and do not give any

satisfactory criterion for achieving the required accuracy. For

instance, in the method proposed by Pichot [8], the Fredholm

equation approach is used to evaluate n, ( = /3/k0 ),, which is

quite cumbersome and there is no discussion about the comput-

ing time with respect to accuracy. In the method proposed by

Ramaswamy et al. [11], calculations have been done for mnhi-

mode waveguides only; however, in actuaf practice, waveguides

used in integrated optical circuits are single moded. In addition,

the WKB technique has been used to determine n,, which

becomes inaccurate for low V values [3], [4] and for profiles far

from parabolic [9]. As mentioned by them, their method fails for

large depths due to the blowing up of the fields. Also, the cutoff

calculations have been done using the WKB approach, which

again is not very accurate. In the method proposed by Meunier

et al. [12], calculations have been done only for multimode

waveguides and there is no mention about the computing time

with respect to accuracy, etc.

In this paper, we present a simple numerical method for the

solution of the wave equation corresponding to the TEO and TMO

modes of an inhomogeneous planar optical waveguide with arbi-

trary refractive index profile. The method is extended to compute

the cutoff wavelength of the TEI mode which determines the

limit of single-mode operation. Such numerical methods are very

useful to test the validity of the commonly used approximate

methods [2]–[6]. In Section II, we will briefly discuss the neces-

sary theory of our method, and in Section III, we will present

some numerical results to show the validity of our method.

II. THEORY

We consider an inhomogeneous planar optical waveguide for

which the refractive index distribution can be written as

n2(X) ‘n: +2n,A~(x), x~o

=n~, X<(I (1)

where n, is the refractive index of the substrate, n ~ is the

refractive index of the cover (which is usually air), n, + A is the

maximum refractive index (for A << n,), and ~(x) defines the

shape of the profile; ~(o) = 1 for all profiles and, except for

parabolic and linear profiles, ~(co) = O. For an exponential pro-

file ~(x) = exp ( – x/d), and for a Gaussian profile j(x)=

exp ( – x2/d2 ), where d is the diffusion depth. For the linear

profile ~(x) =1 – x/d and for the parabolic profile j(x)= 1 –

x 1/d2, so that, for such profiles, ~(d)= O [11].

The transverse field component r) of the mode satisfies the

following eigenvalue equation [17]:

d2@
~+k~d2[n2(f) –n~]@=0 for TE mode (2a)

for TM mode (2b)

where + = EY for TE modes and + = HY /n ( &’) for TM modes,

n. ( = ~/ko) is the effective index of the mode, ~ the propa-

gation constant, ( = x/d, k. is the free-space wavenumber, EY

is the transverse electric field of the TE mode, HY is the

transverse magnetic field of the TM mode, and the direction of

propagation is along the Z-axis.

A. Computation of n ~

A numerical method for the solution of the scalar wave equa-

tion corresponding to the fundamental mode of radially inho-

mogeneous optical fibers has been discussed in detail by Sharma

et al. [18]. Following a similar approach and substituting n2 (.$)

from (1) in (2a) and (2b) for the TE and TM modes, respectively,

we transform the second-order differential equations into the

following first-order differential equations:

dG

d~
—=- G2-k~d2[ n~+2n,Af($) -nj].$’,

& z O for TE mode (3)

dG
–G* – k;d*

d~ =
[n2(.$):*~-&%f

1 d2n2($)

+ 2k~d2n2(&) 1d~2 – ‘: ‘
~> O for TM mode (4)

where G =1/$, d~/d~. In order to obtain the boundary condi-

tions on G, we observe that, for TE modes, both + and drp/dt

are continuous everywhere. Thus, G is continuous everywhere.

Since in the cover region (~ < O)

we obtain

(5b)

1 dHy
However, for TM modes, HY and — — are continuous

n2(&’) dl.-,
everywhere, since $ = HY /n ($), we have

HY($=+O) I-(,($=-o)
~(’$=+o) = (n$+~n$A)l/2 = (n~+2n,A)1’2

_ nc$(f=–o)

‘(n~+2n,A)1’2’
(5C)

Similarly

1 d$ 1 dHY 1 dn2(.$)

~ d.$ t=+ll=~ d.f *=+0– 2n2(&) d.$
[=+0
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Thus

G(&=+o) =y(n:+2n$A)( n:-n:)’”
c

Far into the substrate (i.e., ~ -+ m), since the refractive index

saturates to n,, the field is expected to tend as

exp [ – kod~~f] and thus

G(.&m)=–k Od~~. (6)

The above boundary condition for G(E ~ co) is valid for

profiles which saturate continuously to n.. On the other hand, for

the linear and parabolic profiles, since n = n, for x > d, the

boundary condition becomes G($ = 1) = – kOd(-

Hence, for a given planar waveguide (i.e., for given values of

ko, d, n,, nc, A, and ~ (Q), the problem of computing n= for a

particular mode reduces to solving the first-order differential

equation (3) or (4) as the case may be, using any standard

procedure starting with the initial condition (5b) or (5d) and

satisfying (6) as $ ~ co. Theoretically, G(~ ~ m) corresponds to

the value of G at a very large value of .$; but in order to reduce

the number of steps in the computation, we assume the point

$ ~ m to be some finite value of f much greater than unity (i.e.,

x >> d) where G is very small. This value would depend on the

accuracy required in the computation of n,.

B. Computation of TEO and TMO Mode Cuto#s

The cutoff frequencies of the TEO and TMO modes are param-

eters of considerable interest. At cutoff, n, = n,; hence, (3) and

(4) reduce to

dG
_ = -G’ –2k&d2n,Af(,$),
d~

.$>0 for TEO mode (7a)

[
= –G2 – k~,d’ 2n~Af($)–&

h:)’

1 dzn’

1
+ 2k&d2n2($) d~’ ‘

$>0 for TM, mode (7b)

with the boundary conditions again given by (5) and (6) and n ~

replaced by n, and k. replaced by koc = 2 n/A,,, where A{, is the

cutoff wavelength. In addition, G($ ~ m) = O for both TEO and

TMO modes. Having obtained the cutoff wavelength, one can

immediately obtain the cutoff V number of the waveguide

~.= kOcd(2n,A)1’2.

The problem of computing kc for TEo and TMO modes then

reduces one to solving (7a) or (7b) with the above-mentioned

conditions on G(.$ = + O) and G( & -+ co). As before, the point

& = m is chosen as some finite value of & much greater than
unity.

C. Computation of TEO and TMO Modal Fields

Since + satisfies a linear differential equation, the solution is

unique apart from a constant multiplier. Hence, without loss of

generality, we may assume the field to be unity at the cover-guide

interface, i.e.,+ (0) =1. The value of @ at an arbitrary value of $

can be written as

(8)
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Fig. 1. Plot of normalized propagation constant b as a function of V for TEO

and TMO modes for the three index profiles.

Once n, is determined, the quantity ~& G(&’)d&’ is computed

numerically, where the integrand G ($! is obtained from the

numerical solution of (3) or (4) corresponding to the TEO or TMO

mode. Thus, the modal field @($) can be plotted as a function

of [.

D. Computation of TE1 Mode Cutoff

The cutoff frequency of the TEI mode determines the upper

limit of single-mode operation and, hence, is a parameter of

considerable interest. The modal field r#rfor the TE1 mode cutoff

satisfies the same equation (7a) with the same boundary condi-

tions. Thus, the cutoff V value of the TEI mode is obtained in a

similar manner. However, it may be noted that, for the TEI

mode, at some value of g < co, @ becomes zero, which implies

G -+ m. Hence, in this region, one has to switch over to the

substitution F = l/G= $( d@/d&) -1 which transforms (7a) to

the following form:

dF
~ =l+2F2R~cd2n,Af (~). (9)

Once the F= O (G -+ co) region is crossed, (7a) is used again to

compute G(w).

III. NUMEIUCAL RESULTS AND DISCUSSION

In this section, we present some numerical results to test the

validity of our method. We have computed the effective indices,

the modal field, and cutoff V values for the TEO and TMO

modes corresponding to an exponential, a Gaussian, and a buried

Gaussian profile for which f(x) is e-x/d, e-“/d’, and
e–(x–a)2/.d2 respectively. We assume typical values of the various

parameters:’ n, = 2.177, A = 0.043, d = 0.931pm, a = 0.2009Pm,



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TISCHNIQUES, vOL. MTT-34, NO. 2, FEBRUARY 1986 291

TABLE I
CUTOFF v VALUESOBTAINED BY PRESENTMETHOD

M&e
f (x)=e-x/d

_x2/d2
f (x)=e ~ ~x)=e-(x-a)2/d2

——. —

T=. 1.0968 1.4333 1.0973

‘n-l. 1.1735 1.5843 1.2224

— —

‘1
2.6593 4.0376 3.2218

nC =1.0, and V = 2.0, which, as we will show, corresponds to the

single-mode region. The value of n. for the TEO mode corre-

sponding to the exponential profile obtained by our method is

2.1815083, while the exact and the WKB values are 2.1815083

and 2.1805704, respectively. Thus, we see that our results match

exactly with the exact, while WKB gives an error of about

9X 10-4. Similarly, the value of n= for the TEO mode corre-

sponding to the Gaussian profile obtained by our method is

2.1805099, while the WKB value is 2.1774472. Thus, the WKB

method gives an error of 3 X10-3.

In Fig. 1, the normalized propagation constant

()

n: -n?
b=

2n,A

obtained by the present method has been plotted as a function of

V for TEO and TMO modes corresponding to the above three

profiles.

In Table I, we have presented the cutoff V values of the TEO,

TMO, and TEI modes corresponding to the above three profiles.

As expected, we observe from Table I that,” for each of these

profiles, the cutoff V value of the TMO mode is greater than that

of the TEO mode.

We may mention here that the values of N and the maximum

value of ~ depend on the accuracy required. We have verified

that for the profiles studied here convergence is obtained with

N =40 for TE and N =60 points for TM modes per unit interval
in $. An accuracy of 10– 5 in n, requires typically a maximum
value of $ of about 4 and taking a CPU time of about 35 seconds

on ICL 2960 computer. On the other hand, art accuracy of 10– 7

in n, can be obtained with the same N value but the required

CPU time goes up to 55 s. In addition, since the program is

self-iterative (i.e., it iterates on the maximum & starting from

some initial value), there are no blowing up of the field problems

as reported in [11].

As can be seen from (2b) for graded refractive index profiles,

one has additional terms containing dn2/d~ and d= n 2/d~2 which

are absent in homogeneous waveguides. Using our technique, we

can indeed estimate the effect of these terms and we have found

that for the profiles considered the effect of these terms is only

about .0014 percent near cutoff and .001 percent far from cutoff.

Hence, for such profiles, one may neglect the effect of the vc

term.

In Fig. 2(a) and (b), we have plotted the normalized transverse

modal fields EY and HY as a function of $ for the TEO and TMO

modes, respectively, corresponding to the exponential and buried

Gaussian profiles for V= 2.0. Such plots are extremely useful in

computing the field depth which is defined as the value of f

where the field value reduces to l/e of its peak value. The modal

field distributions are also useful in overlap integral calculations

for estimating the efficiencies in electrooptic or acoustooptic

‘“”kf(’)=’’rw.FM;

A“i’

&/I t 1 1

-0.5 0 1.0 2.0 3.0 .%.0

3

(a)

1.0 A . .,

?

— TE(EYI
-(’%-c )2

,f(~)= e ---- TM(Hy)

1/x\ v = 2.0
v%7-

, Y’,

D

,0

(b)

Fig. 2. Plot of normalized field amphtude as a function of .$( = x/d) for TEO

and TMO modes for (a) exponential profile sad (b) buried Gaussian profile

with n, = 2.177, nc = 1.0, A = 0,043, d = 0.931pm, a = 0.2909pm, and V =

2.0.

interactions using such waveguides, coupling efficiency calcula-

tions, etc.

IV. SUMMARY

In this paper, we have presented a simple numericaf method to

compute the propagation characteristics of single-mode inho-

mogeneous planar optical waveguides with arbitrary refractive

index profiles. The method not only converges rapidly but is also

capable of giving results of specified accuracy. The results ob-

tained by the present method are useful in checking the accu-

racies of the results obtained by various approximate methods.

The method can be used in effective index calculations where

usually the effective index profile is quite arbitrary and is known

only at a finite number of points. Hence, the method can be used

with a little modification for such calculations. The method can

also be used for any experimentally determined profile.
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Exact fields are obtained by the present method which can be

used to form trial fields for variational calculations. Besides, the

same method can be used for fundamental as well as other higher

order modes to obtain n ~ and field profiles.
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Abstract —The cutoff wavenumbers of ‘H? and TM modes (higher order

modes) in a tnbnlar line having an offset center conductor have heen

calculated. Whereas most previous methods used to stndy this structure

were of an approximate nature, the analytical method developed by Singh

and Kothari leads to a rigorous analytical formulation. The boundary

conditions ‘on both conductor boundaries, assumed to be perfectly conduct-

ing, are satisfied exactly. The cutoff values cafcutated show that some

results previously reported are inaccurate.

I. INTRODUCTION

Introducing a lateral offset in the center conductor of a coaxial

line provides a simple way to decrease its characteristic imped-

ance without modifying the dimensions of the conductors [1], [2].

This technique can be used to realize quarter-wave transformers

and other matching devices. The properties of the dominant TEM

mode can readily be determined with conformal mapping. Fur-

thermore, it is also necessary to determine the cutoff frequency of

higher order modes which set an upper limit to the usefuf

frequency of operation.

The propagation along this geometry was considered by several

authors [2]–[6] using approximate techniques for its analysis (in

particular, point-matching and conformal mapping). While most

articles did not indicate which accuracy was obtained, one recent

article [6] provides an upper and a lower bound. In some in-

stances, however, the range between the bounds is rather large

(up to 20 percent), making @e use of the results of little practical

interest. For some other situations, the bounds for successive

solutions actually overlap one another.

The same problem was tackled analytically by other authors

[7]-[9]. A special perturbation method was developed in [8]. It

could be useful when extended to dielectric waveguides or ec-

centric Goubau lines [10], but the study considers only small

eccentricities. Some of the tabulated parameters of [8] actually

yield nonphysical results; also, symmetric and antisymmetnc

modes appear to be degenerate, which contradicts experimental

observations. Finally, an analytical method devised to analyze the

related problem of a circular plate with an eccent~c circular hole

[9] yields incorrect final expressions. Detailed comments on this

paper have appeared recently [17].

The analysis of previous publications shows that, even though

considerable effort has been devoted to the study of this geome-

try, the available techniques are still either approximate when not

altogether incorrect.

A rigorous mathematical derivation is presented in the present

paper. The Helmholtz equation for higher order modes is solved

exactly, and the boundary conditions on the two offset conduc-

tors are satisfied by the technique developed by Singh and

Kothari [11], based on Graf’s addition theorem for Bessel func-

tions [12]. One obtains in this manner an infinite set of linear

equations which must be truncated to permit numerical calcu-

lations. The accuracy of the results can be arbitrarily improved

upon by taking additional terms.

II. BASIC THEORY

The longitudinal direction of the offset tubular line, to which

the axes of the two conductors are parallel, is the z direction. The

system is symmetrical with respect to the x axis; its transverse

cross section is shown in Fig. 1, in which all significant dimen-

sions are also reported. Two polar coordinate systems, labeled

(r, 0) and (r’, 0’), are defined with respect to the centers of the

two conductors located at O and O’, respectively.

The general solution for the transverse dependence of the

potential is obtained by solving the two-dimensional Helmholtz

0018-9480/86/0200-0292$01.00 ~1986 IEEE


